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SUMMARY

The present work addresses the numerical prediction of discontinuous shallow water flows by the appli-
cation of a second-order Runge–Kutta discontinuous Galerkin scheme (RKDG2). The unsteady flow
of water in a one-dimensional approach is described by the Saint Venant’s model which incorporates
source terms in practical applications. Therefore, the RKDG2 scheme is reformulated with a simple
way to integrate source terms. Further, an adequate boundary conditions handling, by the theory of
characteristics, was overviewed to be adapted to the external points of the mesh, as well as to some
points of local invalidity of the Saint Venant’s model. To validate the proposed technique, steady and
transient test problems (all having a reference solution) were considered and computed by means of the
overall method. The results were illustrated jointly with the reference solution and the results carried out
by a traditional second-order finite volume (FV2) scheme implemented with the same techniques as the
RKDG2. The proposed method has proven its practical consideration when solving discontinuous shallow
water flow involving: non-prismatic channels, various cross-sections, smoothly varying bed topography
and internal boundary conditions. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

For many river flow applications, it is generally accepted that the unsteady flow of water in a one-
dimensional approach is governed by the shallow water or the so-called Saint Venant equations.
They represent the conservation of mass and momentum along the direction of the main flow. In
conventional real-life applications, the inclusion of source terms is often necessary. Conversely,
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the presence of extreme slopes, high roughness and changes of the waterway geometry represents
a difficulty that can lead to numerical inaccuracies arising from the source terms of the equations.

It has traditionally been difficult to have only one method able to reproduce automatically any
general solution. Several high-resolution Godunov-type methods [1, 2] have been developed to
solve the shallow water equations with source terms demonstrating the accuracy, effectiveness and
robustness of such methods. Bermudez and Vázquez [3] proposed an upwind method for shallow
water equations with bed slope source term and Vázquez-Cendón [4] applied the same idea to
solve more shallow water flow problems. Recently, Hubbard and Garcı́a-Navarro [5] proposed a
scheme by balancing source terms and flux gradients, in which the upwind method of Bermudez
and Vázquez [3] is used for source terms. Zhou et al. [6] pioneered the application of the surface
gradient method for the treatment of the source terms. This technique can be used in any high-
resolution Godunov-type scheme which requires data reconstruction. The authors’ framework has
been successfully applied to simulate the shallow water equations with bed slope source terms.

Over the last few years, literature has dealt considerably with Runge–Kutta (RK) discontinuous
Galerkin (DG) schemes [7–10]. This class of finite element methods has seen a very significant
attention and has proven its aptness in solving hyperbolic conservation laws. The key feature of
the RKDG method is that it invokes finite volume tools such as: the exact or approximate Riemann
solver to evaluate flux at interfaces [2, 11], total variation diminishing (TVD) RK time stepping
[12], and slope limiters [13–15] to avoid spurious oscillation in the vicinity of strong shocks. A
RKDG method has the advantage of flexibility in handling complex geometries, hp-adaptivity, and
efficiency of parallel implementation and has been used successfully in many applications [10].
For more information about the recent development of the DG method, we refer the reader to the
recent special issues established by Cockburn and co-workers [7, 9].

It is only recently that the DGmethod has been applied to shallow water equations. Schwanenberg
and Kongeter [10] presented the first implementation of the RKDG method for shallow water
equations and its application to practical problems. The authors developed a local DG method for
shallow water model where they used the Harten and Lax numerical flux [16]. The method has
been applied to simulate flows involving shocks, such as dam-break flows and oblique hydraulic
jumps. Most recently, Xing and Shu [17] have extended the high-order finite volume WENO and
finite element DG schemes to solve a class of conservation laws with separable source terms—
particularly applications to the shallow water equations were examined.

The main intention of this survey is to inspect the performance of a second-order RKDG
(RKDG2) scheme. We aim at computing, by means of the RKDG2 method, discontinuous flow
problems (transcritical flow with shocks, hydraulic jumps) involving source terms (slowly varying
bed topography, channel breadth variation, rectangular and trapezoidal cross-sections). Hence, the
RKDG2 scheme is rewritten and detailed in an explicit form as a means to simulate the shallow
water equations. The algorithms were implemented in conjunction with Roe’s Riemann solver [11]
and a simple pointwise treatment of the source terms. Moreover, an explanation of the boundary
conditions handling, by the theory of characteristics [18], is briefly reported. Finally, a set of
various steady and transient flow problems [1, 5, 18–21], all having a reference solutions, has been
selected and computed exemplifying the performance of the traditional RKDG2 scheme versus
the performance of a traditional FV2 method [2]. Both of the finite element and the finite volume
solvers were implemented using the same: source terms treatment; Riemann solver [11]; slope
limiter function [14]; and boundary conditions management [18].

The lay out of this paper is as follows. In Section 2, we present the governing equations.
Section 3 presents an explicit formulation of the proposed RKDG2 scheme. Section 4 describes
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the treatment of the boundary conditions. Section 5 is devoted for the numerical tests and
results.

2. GOVERNING EQUATIONS

Recent schemes are based on the conservative formulation of the Saint Venant equations, because
it is related closely to the fluxes action on the flow

Ut + Fx =G in [0, L] × [0, T ] (1)

where

U =
(
A

Q

)
, F =

(
A

Q2/A + gI1

)
and G =

(
0

gA(S0 − Sf) + gI2

)

t represents time in s, x the longitudinal distance in m, U is the conserved variable or the flow
vector, F the flux vector and G is the source terms vector. A is the wetted cross-sectional area in
m2, Q the flow discharge in m3/s, g the acceleration due to gravity in m/s2. S0 =−�z/�x is the
bed slope where z(x) represents the bed elevation in m. Sf represents the friction slope defined in
terms of the Manning’s roughness coefficient nm [22]. I1 and I2 are, respectively, the hydrostatic
pressure and wall pressure terms. They can be evaluated from

I1 =
∫ h(x)

0
[h(x)−�]�(x, �) d� and I2 =

∫ h(x)

0
[h(x)−�](��/�x)h = h0 d� (2)

where h is the level of the free surface in m, � is the depth integration variable and � corresponds
to the channel width at a particular depth. For a rectangular cross-section, I1 = A2/(2b) and
I2 = b′A2/(2b2), where b(x) is the width of the channel’s bottom in m.
Using the jacobian matrix (J = �F/�U ) of the flux vector with respect to the flow vector,

Equation (1) can be expressed in a quasi-linear form:

Ut + JUx =G (3)

J has two real eigenvalues a1,2 = u ± c, where u = Q/A is the mean velocity and c= √
gA/B is

the wave celerity (B is the channel width at the free surface). The hyperbolic nature of the equation
ensures that matrix J has a complete set of independent and real eigenvectors e1,2 = (1, a1,2)t.

For a non-prismatic rectangular channel, the total derivative of the flux vector dF/dx involves,
in addition to the partial derivative with respect to the conserved variable (JUx ), a partial deriva-
tive with respect to the width variation (�F/�b)× b′(x). Following the work of Garcı́a-Navarro
and Vázquez-Cendón [23], the supplementary partial derivative has been moved to the RHS of
Equation (3). And consequently, the source terms vector is modified to G ′ =G−(�F/�b)× b′(x).

3. RKDG2 SCHEME

In the following section, the governing equations are discretized. The computational domain [0, L]
is divided into N uniform cells Ii =[xi−1/2, xi+1/2] where the points xi are the centres of the cells,
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and �x = xi+1/2− xi−1/2 the cell’s size, assumed to be uniform. In this survey, the RKDG method
is considered according to the approach of Cockburn and Shu [8]. We seek a local approximation
Uh to U such that for each time t ∈ [0, T ], Uh belongs to the finite dimensional space Pk(Ii ) of
polynomial in Ii of degree at most k. Therefore, system (1) is multiplied by a continuous test
function �h and integrated over Ii . Afterward, the flux term is integrated by part to obtain the
following weak formulation:∫

Ii
�tUh�h dx −

∫
Ii
F(Uh)�x�h dx + [F(Uh)�h]i+1/2 − [F(Uh)�h]i−1/2 =

∫
Ii
G(Uh)�h dx (4)

The key feature of the DG method is that the solutions are allowed to be discontinuous over
elemental boundaries. Thus, the function Uh is discontinuous at points xi+1/2. Therefore, the
physical flux function F has to be replaced by a numerical flux function, depending on the two
different values of Uh at the points xi+1/2 as it will be discussed later.

In the aim of decoupling the system, we adopt the Legender polynomials (Pm) as local basis func-
tions to obtain a diagonal mass matrix. As in the standard DG we chose �i

m(x)= Pm(2(x − xi )/�x)
as a test function �h . In this paper, the interest will be constrained to a second-order space accuracy
scheme, thus the method was set up for k = 1, corresponding to piecewise linear approximations.
Therefore, two basis functions {�i

0(x),�
i
1(x)} are needed and the approximation of the solution

Uh(x, t) over each cell Ii can be written as follows:

Uh(x, t)|Ii =U 0
i (t) + 2U 1

i (t)(x − xi )/�x ∀x ∈ Ii (5)

Consequently, at each time step, we have to solve for {U 0(t),U 1(t)} going from the projected
initial condition, which will be defined by the following degrees of freedom:

Um
i (0) = (2m + 1)/�x

∫
Ii
U (x, 0)�i

m(x) dx, m = 0, 1 (6)

In the treatment of the integral terms of Equations (4) and (6) we used quadrature rules. Here
k = 1 is the earlier mentioned order of the approximating polynomial. For Gaussian rules, one
requires (k + 1) nodes to conserve the accuracy order of the full method. This means that for
m = 0, 1 it suffices to use an (m + 1) points Gaussian quadrature rules, respectively. Then the
initial condition will have the following form:

U 0
i (0) =U (xi , 0)=U0(xi ) and U 1

i (0)= √
3/2[U0(xi + �x

√
3/6) −U0(xi − �x

√
3/6)]

To determine the approximate solution, at each time step, we have to find the evolution of the
degrees of freedom as follows:

dUm
i /dt = Lm(U 0,U 1) for m = 0, 1 (7)

L0 and L1 are the DG space operators. After the integrals approximation and by the use of the
Legender polynomials properties, these operators will have the following form:

L0(U
0,U 1) =−1/�x[F̃(Û+

i+1/2, Û
−
i+1/2) − F̃(Û+

i−1/2, Û
−
i−1/2) − �xG(U 0

i )] (8)

L1(U
0,U 1) = −3/�x[F̃(Û+

i+1/2, Û
−
i+1/2) + F̃(Û+

i−1/2, Û
−
i−1/2) − F(U 0

i −U 1
i /

√
3)

−F(U 0
i +U 1

i /
√
3) − �x

√
3/6(G(U 0

i +U 1
i /

√
3) − G(U 0

i −U 1
i /

√
3))] (9)
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where U±
i+1/2 =Uh(x

±
i+1/2, t) are the left and right limits of the discontinuous solution Uh at the

cell’s interface. To maintain the stability and the non-oscillatory property of the RKDG2 method
in the presence of strong shocks, U±

i+1/2 were replaced by the borders (Û±
i±1/2) of the slope limited

solutions where the classical minmod [14] function was applied according to the Osher’s slopes
definition [13]. They are given by

Û∓
i±1/2 =U 0

i ± minmod(U 1
i ,U 0

i −U 0
i−1,U

0
i+1 −U 0

i ) (10)

F̃(U−,U+) is the numerical flux function based on the approximate Riemann solver of Roe [11].
Its expression takes the following form:

F̃(U−,U+) = 0.5

[
F(U−) + F(U+) −

2∑
p=1

�p
int|ã p

int|ẽ pint
]

(11)

where, the subscript ‘int’ designates the intermediate state between the left and right states. Once the
Roe average velocity and celerity (ũint, c̃int) are found, the mean eigenvalues ã p

int and eigenvector
ẽ pint are found. An average of pth waves strength �p

int is found by an explicit formula involving
U−,U+, ũint and c̃int [23].

A well-known problem that occurs when using the Roe’s Riemann solver is the possibility of
having unphysical expansion shocks in the solution [2]. Instead of the required fan, a discontinuous
shock is chosen by the Riemann solver to represent the expansion. Hence, the absolute eigenvalues
are modified using an entropy fix, namely:

|ã p
int|∗ =

⎧⎨
⎩

|ã p
int| if |ã p

int|��p where

(ã p
int)

2/(2�p) + �p/2 if |ã p
int|<�p �p = min[c̃int,max(0, 2((a p)+ − (a p)−))]

The second space order semi-discrete scheme, (8) and (9), is discretized in time by a nonlinearly
stable two step RK mechanism [12] leading to a second-order accuracy scheme in time and space.
Thus, the time stepping for each degree of freedom is:

(U 0,1)int = (U 0,1)n + �t L0,1((U
0)n, (U 1)n)

(U 0,1)n+1 = 0.5[(U 0,1)n + (U 0,1)int + �t L0,1((U
0)int, (U 1)int)]

(12)

According to the stability analysis (performed for scalar non-linear hyperbolic conservation laws)
of Cockburn and Shu [8], the choice of the CFL [24] number depends on the desired order of
accuracy of the scheme and was chosen equal to 0.333. Hence, the time step is calculated:

�t =CFL�x/min
i

(|u| + c)ni (13)

For a better comprehension of the approximating polynomials’ structure, we illustrate in Figure 1
the numerical evolution of the piecewise linear approximations after 61 time step going from a
constant initial condition. This simulated problem will be discussed later. However, in order to
adjudicate with respect to a reference solution and a finite volume scheme, only mean values of
the polynomial approximations will be considered in the figure plots of Section 5.
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Figure 1. Evolution of the approximating polynomials after 61 time steps.

4. BOUNDARY CONDITIONS

Although the characteristic form of the Saint Venant’s momentum equation has lost almost all
reference to the forces and fluxes included for the conservation of momentum, this form provides
insight into shallow-water wave motion, which is not evident in the other forms. This form is
a transformation of Saint Venant’s momentum equation where the derivatives are taken in the
proper directions, called characteristics directions, and can be written as ordinary derivatives and
not partial derivatives. The Saint Venant characteristic form is

(�Q/�t + (u ± c)�Q/�x) + (−u ± c)(�A/�t + (u ± c)�A/�x) = gA(S0 − Sf) + gI2 (14)

where the above differential operators (d±/dt = �/�t+ (u±c)�/�t) are in fact the total derivatives
along the characteristic lines defined by dx/dt = u ± c (denoted by C+ and C−).

In practical applications, every channel is of finite length; at some point the analysis starts and at
another it ends, so boundaries must be defined. Possible conditions at the boundaries of a channel
are shown in Figure 2. If the flow is subcritical, the interval of dependence [2] for the upstream
most point on the channel is somewhat upstream from the boundary point. Thus, estimation of
flow conditions at this boundary point requires information about the flow conditions upstream
of the boundary. The (C+) trajectory from upstream points affects the flow at that point in the
(x–t) plan; therefore, a single condition must be specified at the boundary point. This kind of
boundary conditions can be called physical boundary conditions. As the (C−) curve leaves the
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Figure 2. Characteristic curves at boundary points for subcritical flow.

Figure 3. Characteristic curves at boundary points for supercritical flow.

domain, the influence region belongs to the computational domain and the information linked to that
characteristic curve depends exclusively on interior points. These kinds of boundary conditions are
called numerical boundary conditions. Again, at the downstream boundary, part of the interval of
dependence falls outside the channel length being analysed, and a physical downstream-boundary
condition must be supplied. The numerical boundary condition is to be integrated from the Saint
Venant characteristic form along the (C+) characteristic curve. If the flow is supercritical at a
boundary, the required number of conditions changes. At an upstream boundary, the flow and the
elevation of water must both be supplied because, as shown in Figure 3, the interval of dependence
of points on the upstream boundary in the (x–t) plan are outside the length of channel analysed.
At the downstream end, no boundary conditions are required because the interval of dependence
falls within the length of channel analysed. Therefore, both of the (C+) and (C−) characteristic
curves should propagate information from upstream to downstream. Imposing any values in this
case would over specify the problem and represent a contradiction to the mathematical theory. In
this situation, two numerical boundary conditions are calculated by differentiating the Saint Venant
characteristics form along both (C+) and (C−) curves.

The most usual physical boundary conditions at the inlet are a discharge hygrograph Q(t) or a
water depth limnigraph h(t) in case of subcritical flow and both together in case of supercritical
flow. In finding numerical boundary conditions we followed the framework of Garcı́a-Navarro
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and Savirón [18], who gave the insight on how to apply the theory of characteristics to deal with
numerical boundary conditions of open channel flow problems with the McCormack’s method.

5. NUMERICAL TESTS AND RESULTS

In this section the proposed implementation of the RKDG2 scheme is verified by solving some
relevant benchmark problems presented in the literature [1, 5, 18–21]. The classical idealized dam-
break problem, used in several papers to evaluate shock-capturing schemes is examined first.
Subsequently, steady discontinuous flow problems involving source terms (friction terms; bed
and/or width variation; rectangular and trapezoidal cross-sections) are investigated. Therefore, the
unsteady model is given steady boundary conditions, and the limiting steady solution is compared
with an available reference solution. Moreover, a flow problem involving internal boundary con-
ditions was broached so as to ensure that: the RKDG2 scheme is able to deal with flows over
compound branches coupled with internal boundary conditions.

To achieve a better interpretation, we will exhibit the RKDG2 scheme’s results close to the
results of a traditional FV2 method. This scheme is broadly known as the TVD Lax-Wendroff [2]
and is, as well, second-order accurate in space and time; its numerical flux function consists of
the Roe’s first-order flux coupled with a flux limited second-order term. It is worth noting that
the latter scheme was, as well, implemented along with the minmod slope limiter [14] and the
pointwise treatment the source vector. For the convergence (stopping) criteria in the simulation
of the steady problems, we used the L2 norm where subsequent iteration results were compared.
These varieties of numerical results demonstrate the ability of the RKDG2 method to produce
generically more accurate solutions than the FV2 scheme.

5.1. Transient idealized dam-break problem

We considered a dam, in a wide (b= 10m) frictionless channel with a flat-bottom surface, initially
located at the middle of the 2000m long rectangular channel. A discontinuous initial condition
defines the non-linear problem, and we have studied the evolution of the free surface and the flow
discharge after 50 s of the dam breaking. This initial conditions led to a shock-wave propagation to
the downstream and a rarefaction wave propagation to the upstream. Two cases were set according
to the initial depth ratio hu/hd, where hu and hd denote, respectively, the water depths upstream
and downstream of the dam. The first case corresponds to a depth ratio of 4 (Figure 4) and the
second to a ratio of 20 (Figure 6). Since the flow during 50 s did not reach boundaries; we applied,
exclusively for this test problem, transitive boundary conditions for the upstream and downstream
borders. In the simulation, the space interval of the mesh is �x = 20m and the first case’s results
are illustrated in Figure 5 along with the FV2 scheme’s results and the analytical solution [19]. The
second case’s results are displayed in Figure 7, where good captures of the discontinuities evolution
were achieved by the advised scheme. However, it is worth noting that the corresponding governing
equations of this problem are characterized by a zero source vector (G = 0). Then, more realistic
problems are investigated below, where source terms components (G �= 0) must be incorporated.

5.2. Steady hydraulic jump in a prismatic rectangular channel

The channel’s bed, the free surface and critical levels of this problem are illustrated in Figure 8.
It is a steady problem of a hydraulic jump modelling in a 1000m long rectangular prismatic
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Figure 4. Initial condition and exact solution for the unsteady dam-break problem; hu/hd = 4.

Figure 5. Flow variables’ plots simulated by RKDG2 and FV2.

channel of width b= 10m with a Manning’s roughness coefficient of nm = 0.02 and a spatially
varying bed slope. The inflow discharge is Q = 20m3/s. The flow, supercritical at the upstream,
changes via a hydraulic jump to be subcritical halfway along the channel, and remains subcritical
thereafter. Therefore, the water depth (hu = 0.543853m) and the water discharge Q = 20m3/s
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Figure 6. Initial condition and exact solution for the unsteady dam-break problem; hu/hd = 20.

Figure 7. Depth and discharge computed by RKDG2 and FV2.

must be specified for the upstream boundary condition. At the downstream end, we specify only
one physical condition (hd = 1.334899m) as the flow is subcritical, and for the water discharge
we proceed by a numerical boundary condition. For the derivation of the analytical solution and
the bed slope see McDonald et al. [21]. In the simulation, the space interval of the mesh is
�x = 25m. The resolutions of the finite element and the finite volume solver are displayed in
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Figure 8. Flow properties of the hydraulic jump problem listed in Section 5.2.

Figure 9, both against the exact solution. The RKGD2 scheme and the FV2 scheme appear to have
fair similar outcomes for the water stage profile. A poor maintenance of the steady-state discharge
was achieved by the FV2 scheme which is not present in the RKDG2 results, notably after the
discharge peak.

5.3. Transcritical flow, with shock, over a hump in a non-prismatic channel

It is about a steady water flow over a hump in a converging–diverging conduit. This channel is 3m
long with a smoothly varying bed and width giving the channel a symmetrical form (Figure 10).
Again the flow regime is dependent on the boundary conditions. Our test case here is that of a
transcritical flow with a stationary shock downstream of the hump and a critical point at the throat.
The flow, subcritical at the upstream, turns to supercritical at the middle of the channel and then
returns to subcritical at the downstream passing through a shock. Following Reference [5], the initial
condition is h+z = 1m and Q = 1.8796m3/s. Since the flow regime is subcritical at the inflow and
the outflow, one boundary condition should be specified at the upstream and at the downstream.
For the upstream boundary condition we require the water discharge (Q = 1.8796m3/s) and the
water depth is found by a numerical boundary condition. For the downstream boundary, a water
depth of hd = 1m is imposed as a physical boundary condition and the water discharge is set
up by a numerical boundary condition. An analytical solution can be calculated for each point
in the channel by solving a cubic equation that derives from conservation of water energy. The
space interval of the mesh is �x = 0.0375m. Figure 11 is a plot of the results provided by the two
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Figure 9. Hydraulic jump and discharge profiles computed with RKDG2 and FV2.

Figure 10. Bed and width geometry of the conduit detailed in the Section 5.3.

schemes. The depths and the discharges profiles, carried out by both RKDG2 and FV2 schemes, are
in a good agreement with the exact solution. However, a good resolution of the trailing discontinuity
was accomplished by RKDG2.
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Figure 11. Display of the flow variables simulated by RKDG2 and FV2.

5.4. A succession of transcritical flows with shocks in a trapezoidal conduit

This example is taken from Reference [21], where a series of cases with analytical solutions
are generated for problems with non-flat beds. This hydraulic problem consists of a 650m long
trapezoidal channel with a bed variation given by a slope function of x and a roughness coefficient
nm = 0.03. For more understanding of this flow problem, we show in Figure 12 the bed slope
variation and the flow properties according to the bed level and critical level. The flow is enforced
to be supercritical at the upstream and the downstream. Consequently, two physical boundary
conditions were specified at the upstream (Q = 20m3/s and hu = 0.850m). At the downstream,
two numerical boundary conditions were calculated as discussed in the previous section. This
example is characterized by a fast variation in the flow regime from supercritical to subcritical
generating a succession of stationary shocks and points of transcritical flow. The space interval of
the mesh is �x = 8.125m. Figure 13 contains the discharge and water depth plots. The numerical
results achieved by the RKDG2 scheme proved more advantageous. As in the hydraulic jump
problem (5.2); although FV2 gives a very close approximation to the stage model carried out by
RKDG2, it was very poor at predicting the flow discharge where discrepancies in the solutions
have occurred. On the contrary, these regions (between the discharge peaks) were well matched
by RKDG2.

5.5. Steady flow over a ladder of weirs

In open channel flow simulation, some points of local inapplicability for the Saint Venant channel
flow equations may exist. One typical example is the flow over weirs. The whole model may be
considered as a set of reaches computed with the Saint Venant equations and linked by special
points where different laws are introduced. This test example [1] involves the computation of a
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Figure 12. Slope variation and flow properties for the problem detailed in Section 5.4.

Figure 13. Water depth and flow discharge computed by RKDG2 scheme and FV2.

discontinuous stationary flow in a 500m long rectangular channel, 6m wide that contained three
identical weirs of 0.25m in height. The bottom slope was S0 = 0.008, and the Manning’s roughness
coefficient was nm = 0.015. The discharge was 20m3/s, and the initial water depth was set 2m.
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Figure 14. Free surface profile over a ladder of weirs computed by RKDG2 and FV2.

For the flow over the internal weirs, a numerical boundary condition coupled with the weir
equation was performed for the approximate solution corresponding to the cell preceding each
internal weir. While, for the approximate solution relative to the cell following each weir we adopt
a numerical boundary condition coupled with a discharge conservation condition.

In treatment of external boundaries, one physical condition is imposed at the upstream
(Q = 20m3/s) and a numerical boundary condition is calculated. At the downstream, a numerical
boundary condition coupled with the weir equation was set. The weir relation used for the bound-
ary conditions treatment is: u = 2/3×Cd × √

2gH3/2
w , where Cd = 1.39 is the coefficient of the

discharge and Hw is the water depth above the level of the weir.
The results achieved by FV2 and RKDG2 are illustrated in Figure 14 and found to compare

favorably with a reference solution. This reference solution was obtained by applying the first-order
upwind scheme of Roe [11] implemented with the upwind treatment of the source terms [3]. It
is worth stressing that this latter scheme produces second-order accuracy in space for steady case
[20]. The results of this calculation are carried out using a grid space of �x = 2.5m grid. The
proposed model located the sharp discontinuities of the corresponding stationary solution. Thus,
this model also could efficiently deal with multiple hydraulic jumps for steady flow over a ladder
of weirs.

6. CONCLUSIONS

In the present work, we reformulated a version of the RKDG2 with a simple way to incorporate
source terms and a robust procedure to cope with boundary conditions. The performance of the
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overall technique was shown in several examples going from the standard dam-break problem to a
selection of discontinuous steady flow tests, as well as to compute flow over compound branches
coupled with internal boundary conditions.

For a better evaluation, a widely used traditional TVD-FV2 method has been considered and
implemented invoking: the same Riemann solver; the same slope limiter; the same boundary
conditions treatment; and the same manner of discretizing source terms. In all the investigated
problems, the RKDG2’s results were depicted together with the FV2’s results all to be weighted
against an available reference solution. Strong numerical evidence shows the ability of the RKDG2
scheme to provide accurate solutions in proper agreement with the reference solution. Hence, it can
be concluded that the discussed scheme is accurate, straightforward, efficient and robust and can
be of practical consideration when solving shallow water flows involving: non-prismatic channels;
various cross-sections; smooth topology variation; and internal boundary conditions.

However, even though the simple treatment the source terms has achieved promising results
when employed within the RKDG2 method, unfortunately, it was unable to cope with problems
involving discontinuous bed topography. Hence, future work will consist of applying a more robust
procedure of treating the source vector with the RKDG2 method.
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